GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
News
Check out the latest ATP Polymer news and videos

Flame Retardant Mechanism of Polymer Materials in Automotive Industry

The development of lightweight vehicles has promoted the widespread application of polymer materials in the automotive industry. Polymer materials can be seen in various components of automobiles, such as interior materials, load-bearing parts, and new energy power batteries. Due to the special requirements of automotive use, flame retardancy is a very important factor in performance.


However, the flame retardancy performance of most polymer materials is not ideal. Therefore, when polymeric materials are applied to automotive components, they need to be modified for flame retardancy, and the polymer materials with flame retardancy properties can be prepared to increase their limiting oxygen index (LOI) to 25.0% ~35.0%, effectively improving the safety performance of automobiles.


The development of flame retardant polymer materials in China started relatively late, but has developed rapidly. In recent years, the fast-growing new energy vehicle industry has directly boosted the demand for flame retardant polypropylene.


Temperature, combustibles and oxygen are the three elements of combustion. Flame retardancy can be achieved by slowing down or preventing one or more of these elements. The flame retardancy mechanism of polymer materials is generally divided into three types: gas-phase flame retardancy, condensed-phase flame retardancy, and interruption of heat exchange flame retardancy.


Gas-phase flame retardancy mechanism of polymer materials


Gas-phase flame retardancy system refers to the flame retardant effect that interrupts or delays the chain reaction of combustion in the gas phase.


  • When heated or burned, flame retardant materials can produce free radical inhibitors, thereby interrupting the combustion chain reaction.

  • When heated or burned, flame retardant materials can generate fine particles that promote the combination of free radicals to terminate the chain reaction of combustion.

  • When heated or burned, flame retardant materials can release a large amount of inert gas or high-density steam, which suffocates the combustion and terminates the combustion process.


The condensed-phase flame retardancy mechanism of polymer materials


Condensed-phase flame retardancy refers to the retardation or interruption of the flame retardant effect generated by the thermal decomposition of the flame retardant material in the condensed phase.


  • Flame retardants in the condensed phase can delay or prevent the thermal decomposition that produces combustible gases and free radicals.

  • Inorganic fillers with larger specific heat capacity in flame retardant materials can make the materials difficult to reach the thermal decomposition temperature by storing and conducting heat.

  • When burning, flame retardant materials can generate a porous carbon layer on their surface, which is difficult to ignite, insulated, and isolated, blocking the diffusion of combustible gases and heat, slowing or terminating the combustion of polymer materials.


The interruption of heat exchange flame retardancy mechanism of polymer materials


The flame retardant polymer materials transfer part of the heat generated by the combustion to reduce the temperature of combustibles to below the thermal decomposition temperature of materials, making them unable to maintain the production of volatile substances, thereby achieving flame retardation.

Flame Retardant Mechanism of Polymer Materials in Automotive Industry

ATP Polymer News Recommendation

17 May, 2024
Flexible Solutions: Elastomer TPV in Medical Devices for Improved Patient Comfort
The Importance of Patient Comfort in Medical DevicesIn the realm of medical devices, patient comfort is a top priority. From wearable devices to surgical tools, the materials used play a crucial role ...
15 May, 2024
Taking the Heat: Elastomer TPV in Industrial Gaskets for High-Temperature Applications
The Crucial Role of Gaskets in High-Temperature EnvironmentsIn industrial settings where high temperatures are a common challenge, the reliability of sealing components is paramount. Gaskets, which cr...
13 May, 2024
Silent Comfort: Elastomer TPV in Automotive Weather Seals for Noise Reduction
The Pursuit of Quieter RidesThe automotive industry constantly seeks innovations to enhance the driving experience, and one crucial aspect is reducing unwanted noise within the vehicle. Elastomer Ther...
13 May, 2024
Low Smoke Zero Halogen Material for High-Voltage Lines in New Energy Vehicles
With the increasing adoption of new energy vehicles, the automotive industry is under constant pressure to enhance safety measures. As high-voltage lines play a crucial role in powering these vehicles...