GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
News
Check out the latest ATP Polymer news and videos

What Are the Factors That Affect the Molding Shrinkage of TPO Thermoplastics?

Ⅰ. What is TPO Thermoplastic?


Thermoplastic refers to plastics that have the characteristics of softening when heated and hardening when cooled. Most of the plastics we use in our daily lives belong to this category. When heated, they soften and flow, and when cooled, they harden. This process is reversible and can be repeated.


Ⅱ. Factors Affecting the Shrinkage of TPO Thermoplastics During Forming


1. The variety of plastics. During the thermoplastic forming process, due to the volume change caused by crystallization, strong internal stresses, large residual stresses in the frozen plastic parts, and strong molecular orientation, the shrinkage rate is higher than that of thermosetting plastics. The shrinkage range is wide with obvious directionality. In addition, the shrinkage after forming, annealing, or moisture adjustment treatment is generally larger than that of thermosetting plastics.


2. The characteristics of plastic parts. During molding, the molten material comes into contact with the surface of the cavity and immediately cools to form a low-density solid outer shell. Due to the poor thermal conductivity of plastics, the inner layer of the plastic part cools slowly and forms a high-density solid layer with large shrinkage. Therefore, the thicker the wall, the slower the cooling, and the thicker the high-density layer is, the greater the shrinkage will be. In addition, the presence, layout, and number of inserts directly affect the direction of material flow, density distribution, and shrinkage resistance. Therefore, the characteristics of plastic parts have a greater impact on the shrinkage size and directionality.


3. The form, size, and distribution of the feed port directly affect the flow direction of thermoplastic materials, density distribution, pressure-holding shrinkage compensation, and forming time. A direct feed port or a feed port with a large cross-sectional area (especially with a thick cross-section) will result in smaller shrinkage but greater directionality, while a wide feed port with a short length will result in less directionality. Shrinkage will be greater when closer to the feed port or parallel to the material flow direction.


4. Molding conditions. A high mold temperature, slow cooling, high density, and high shrinkage are associated with a higher degree of crystallization, which leads to greater volume changes, leading to larger shrinkage. The temperature distribution of the mold and the uniformity of cooling inside and outside the plastic part are also related, directly affecting the size and directionality of shrinkage in various parts. In addition, maintaining pressure and time also have a significant impact on shrinkage. The higher the pressure and longer the time, the smaller the shrinkage but the greater the directionality.


High injection pressure, low viscosity of the molten material, low interlayer shear stress, and high rebound after demolding can all reduce shrinkage. Higher temperature materials have higher shrinkage but less directionality. Therefore, adjusting molding factors such as mold temperature, pressure, injection speed, and cooling time during molding can also properly change the shrinkage of plastic parts.


When designing molds, the shrinkage rate of each part of the plastic part is determined based on the shrinkage range of various plastics, the wall thickness and shape of the plastic part, the form, size, and distribution of the feed port, and then the cavity size is calculated based on experience.

Name
Email
Contact No
Country
Product type
Application type
Enquiry Message
What Are the Factors That Affect the Molding Shrinkage of TPO Thermoplastics?

ATP Polymer News Recommendation

22 Apr, 2025
TPU vs PC: Comparative Analysis in New Energy Vehicles
In new energy vehicles (NEVs), both TPU materials (Thermoplastic Polyurethane) and PC (Polycarbonate) have specific applications and advantages. However, they differ significantly in performance chara...
15 Apr, 2025
The Development of TPU Materials in Automotive Lightweighting
Definition of TPU MaterialsTPU materials (Thermoplastic Polyurethane Elastomer) are thermoplastic polyurethane rubbers composed of urethane hard segments reacting with polyester or polyether soft segm...
09 Apr, 2025
Advantages of Fire-Resistant LSZH Cable
The insulation layer of Fire-Resistant LSZH is made from cross-linked polyolefin (XLPE) flame-retardant material. Through irradiation cross-linking technology, the cable achieves flame-retardant prope...
08 Apr, 2025
Application of TPU Materials in the Cable Industry
In recent years, TPU materials have gradually been replacing PVC and chloroprene rubber in cable applications. Although the overall consumption of TPU in the cable industry is relatively small, it off...